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ABSTRACT

We describe an image processing framework designed to de-

tect and quantify the genesis of microscopic choroidal blood

vessels. We used fluorescein angiography to monitor the dy-

namic of neo-vascularization of the retina after inducing le-

sions with a calibrated laser pulse. The angiogenesis can

be revealed by an increase in the overall fluorescence level

and/or diffusion size of the lesion. The proposed framework

allows measuring both features from mis-aligned angiograms

acquired with different gains and contrasts. It consists in

aligning all the images, homogeneizing their intensity char-

acteristics and segmenting the lesions. In particular, we im-

plemented a level set segmentation algorithm to delineate the

diffusion area. We show that our framework allows detect-

ing neo-vascularization when one of these features changes

by less than 10%.

Index Terms— Angiography, detection, registration, seg-

mentation, level sets.

1. INTRODUCTION

Age-related macular degeneration (AMD) is a major disease

affecting the retina [1]. The wet form of AMD is character-

ized by the development of a choroidal neo-vascularization

which follows the initial loss of sensitivity of the retinal pig-

ment epithelium. Such proliferation of choroidal neo-vessels

results in massive destruction of the retina, further increasing

the size of the macular scotomas. Quantitative retinal imag-

ing [2] is therefore critical to follow the evolution of these

lesions over time and assess the effects of putative treatments

in clinical studies.

This report is part of a larger study investigating the ef-

fects of potential drug treatments for reducing angiogenesis

following the occurence of small retinal lesions [3]. Arti-

ficial retinal lesions were produced by photocoagulation in

anesthetized baboons, using a calibrated laser pulse. We ac-

quired fluorescein angiograms to perform a longitudinal study

of the post-lesion neo-vascularization. Choroidal neo-vessels

are both diffuse and microscopic, thus being unresolved with

such imaging modality. They however appear on the images

as a diffuse area due to leackages in the vasculature tree. Our

goal was therefore to develop a quantitative method for de-

lineating and tracking both the diffusion area and the fluores-

cence level of the lesions. Data were acquired with an an-

giograph that required manual adjustments of the acquisition

parameters (Olympus Medical Systems Corp., Tokyo, Japan;

model type GRC-W), thus mimicking many of the variabil-

ity usually encountered in clinical eye examination. Argen-

tic photos were taken at regular intervals following intrave-

neous injection of fluorescein (10%). Photos were then digi-

talized offline. Time series covering tens of minutes after flu-

orescein injections were acquired. For each animal, several

dataset were collected before (baseline control), immediately

after lesions and up to several weeks after lesions to be able

to track the dynamics of retinal neo-vascularisation. Herein,

we report the processing framework that was developed to

assess these effects in a robust and quantitative way in the

perspective of being able to apply it to both experimental (i.e.

laser-induced) or clinical (i.e. AMD-like scotomas) studies

of macular lesions. After an overview of the full processing

flow, we will describe its steps: the contrast adjustment, the

registration method and the segmentation algorithm. Finally,

we will present our results measured on experimental data.

2. PROCESSING STREAM

Our goal was to design a robust and mostly automated pro-

cessing stream to analyze sequences of angiograms. Acquir-

ing data for both eyes in the same experimental session im-

plied moving the angiograph before every acquisition, which

led to misaligned images with varying contrasts and illumi-

nation levels. The proposed framework aims at making all

images in a sequence directly comparable, in order to mea-

sure the area and fluorescence levels of each lesion. Exam-

ples of lesions can be seen on Fig. 3. For an image i and a

lesion n, we define the fluorescence index f(i, n) as the ratio

of the mean intensity in lesion n over the mean intensity in
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the blind spot (or papilla), which we used as a reference re-

gion; then, we denote the area by a(i, n). The repositioning

of the angiograph introduced some metric distortions between

images. To be able to compare measurements of the diffusion

area of a lesion across images, we had to correct for these

distortions by applying a non-linear registration scheme that

would align all images in a sequence. Then, we performed

a contrast adjustment based on meaningful image features, to

homogeneize the intensity characteristics of images through-

out the sequence. Finally, we had to identify and delineate

each lesion. Considering the complexity of the retinal image

content, we decided not to attempt segmenting them from the

entire image. Therefore, the operator had to manually select

rectangular regions of interests, each containing one lesion.

This selection had to be done only once per sequence because

the registration was performed previously. The full process-

ing stream for a given input image is described on Fig. 1.

 input image i

image registered to ref. image

hp-filtered image

contrast-normalized image

rectangle
ref. ROI

rectangle
lesion ROI

segmented ref. region

segmented lesion n

mask registered 
to ref. image

lesion fluorescence index f(i,n)lesion area a(i,n)

binary image mask

grayscale image

with user intervention

fully automated process

numerical result

circular
image
mask

reference image

registration parameters

Fig. 1. Description of the full processing stream

3. IMAGE REGISTRATION

The positioning of the angiograph was adjusted manually for

almost every image acquisition. Its location is governed by

three degrees of freedom: the distance to the target, the height

of the apparatus and the rotation around a vertical axis cross-

ing the target position. The observed surface is the eye fun-

dus, which is approximately spherical. Consequentely, we

used a quadratic model to account for all potential image de-

formations:

{
X ′ = aX2 + bY 2 + cXY + dX + eY + f
Y ′ = gX2 + hY 2 + iXY + jX + kY + l

,

where (X,Y ) and (X ′, Y ′) are the coordinates in the input

and reference images, and (a, b, c, d, e, f, g, h, i, j, k, l) are

the twelve parameters to be estimated.

We implemented a semi-automatic approach in which the

experimenter selects nine (or more) matching points on each

image. The choice of these points is facilitated by some au-

tomatic pre-processing of the images (filtering, thresholding,

vasculature skeletization, point selection limited to vessels

crossings on the skeleton). The parameters are then com-

puted by solving the corresponding linear equations system,

which has twelve unknown parameters and eighteen (nine

points time two) equations, with a least-square estimator. An

exemple of results produced by our registration algorithm is

presented on Fig. 2.

Fig. 2. Registration. The ref. image skeleton overlapped

on the original input image (left) and on the registered input

image (right)

4. CONTENT-BASED CONTRAST
NORMALIZATION

The manual positioning of the angiograph led to large vari-

ations in the intensity characteristics of the images. First,

the incidence angle can result in low-frequency spatial back-

ground variations within an image (as illustrated n the top-

right image of Fig. 3), which adds on top of the structural

low-frequency spatial variations (presence of the fovea). We

therefore applied a high-pass filter on all images to reduce the

amplitude of these low-frequency variations.

The average illumination and the dynamic range also

showed large variations across images. In order to increase

their homogeneity, we performed a contrast normalization

by the way of an affine intensity transform that matched two

image features across the entire sequence. The first feature is

the mean intensity in the reference region - the papilla - which

has a similar shape as the lesions, allowing us to use the same

segmentation algorithm to extract it automatically. The sec-

ond image feature to be matched is the mean intensity level

within the informative part of the image, which is a circular

mask created by the diaphragm of the angiograph. We thus
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implemented an automatic detection of this circular mask,

that consisted in a filtering, an automatic histogram-based

thresholding, followed by a Hough transform.

These two operations produced images with fairly similar

characteristics, as illustrated on Fig. 3.

Fig. 3. Contrast normalization. Top row: two images as orig-

inally acquired (overlapped are the edges of the circular mask

and of the segmented papilla). Bottow row: after filtering and

normalization.

5. SEGMENTATION

To extract the lesion (and the papilla) within each rectangular

region of interest, we designed a segmentation method that

we thought would overcome the three following difficulties:

1. the smoothness of the edges of the lesion; 2. the low fre-

quency drift present in the background; 3. the large blood

vessels that can cross the lesion. We chose the active contour

model [4], that consists in adjusting an initial closed curve

until it fits the border of the region. Our algorithm is based on

the level set method [5]: the curve is seen as the zero level of

a higher dimensional function, and the motion of the curve is

guided by minimizing an energy function which defines the

problem. In our case, the energy is composed of two terms: a

“data attachment” term and a “shape prior”.

Segmentation models based on locally stopping the con-

tour on high image gradient [6] are not adapted in our case,

due to the smoothness of the regions border.This would re-

sults in ”leaks”, where the lesion borders are too diffuse. Fur-

thermore, the low frequency variations in the image back-

ground are not totally eliminated by the high pass filter (Sec-

tion 4), which prevents using methods based on global statis-

tics. However as can be seen in Fig. 4, these lesions are lo-

cally brighter than the background, thus implying different

local statistics inside and outside the lesion. Therefore, we

decided to use the local Gaussian model [7], which consists

in separating two regions modeled by local Gaussian statis-

tics. It is defined by the following energy function:

E =
∑

i∈{in,out}

∫
Ωi

− log pi(I(x), Ωi)dx , (1)

with

− log pi(I(x), Ωi) =
(I(x)− μi(x))2

2σi(x)2
+

1
2

log(2πσ2
i ) , (2)

where pi is the probability for the point x with intensity I(x)
to belong to the local region characterized by local mean

μi(x) and local variance σi(x). The evolution equation is

obtained by differentiating Eq. (1) as follows:

Ct(x) =
(I(x)− μin(x))2

2σin(x)2
− (I(x)− μout(x))2

2σout(x)2
+log

σ2
in

σ2
out

,

where μin, σin and μout, σout are respectively the mean and

variance inside and outside the active contour. These local

statistics need to be recomputed at each iteration during the

curve adjustment.

In some cases, one or several vessels can cross the lesion.

Because their intensity is usually close to the one of the lesion,

the contour might be attracted by the vessels. Increasing the

regularization cannot help preventing this kind of attraction,

as these vessels can be large. To overcome this problem, we

added in our model a circular shape prior that penalizes the

points that are far from the centroid, thus avoiding the con-

tour from being attracted by vessels (see Fig. 4). The prior is

defined by the following energy function:

E =
∫

Ωin

− log pi(x,Ωi)dx + ν|C| , (3)

with

− log pi(x,Ωin) =
(x− cin)2

2σ2
in

+
1
2

log(2πσ2
in) , (4)

where cin is the centroid of the region, σin a spatial variance

of the region and ν|C| is a regularization term corresponding

to the minimization of the contour length.

In our experiments, this model behaved quite well. It

seems to be the most adapted to our case by being robust to

both inhomogeneities and soft region edges.

6. RESULTS AND DISCUSSION

To estimate the robustness of the proposed framework, we

performed a reproducibility analysis, based on the hypothesis

that the measured lesion area and fluorescence index should

be identical if measured on angiograms acquired under the

same conditions. However, because the fluorescein continu-

ously spreads through the vascular system after its injection

and because the lesion itself can evolve between successive
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Fig. 4. Segmentation. On the left, without the shape prior, the

contour is attracted by the vessel crossing the lesion. On the

right, with the shape prior, the segmentation is correct.

experimental sessions (which are separated by ten to fifteen

days), it is quasi-impossible to identically reproduce such ac-

quisition conditions. Therefore, we pooled together all im-

ages acquired in time bins of one minute (excepted the first

minute), separately for each experimental session, thus creat-

ing several groups of images G1, ..., GP within each of which

we assumed stationarity. Each group gave a sequence of im-

ages that was fully analyzed with our processing stream. We

then computed the following ratios for each group Gp and

each lesion n:

FGp
(n) =

std
i∈Gp

(f(i, n))

m
i∈Gp

(f(i, n))
and AGp

(n) =
std

i∈Gp

(a(i, n))

m
i∈Gp

(a(i, n))
,

where m(.) and std(.) designate the mean and standard de-

viations. The normalization of the standard deviation by the

mean in the above equations permits gathering results from le-

sions of different sizes. A weighted averages across all groups

is then computed as a measurement of the robustness for the

full framework:

F =

∑
p |Gp|m

n
(FGp

(n))∑
p |Gp| and A =

∑
p |Gp|m

n
(FGp

(n))∑
p |Gp| ,

where |.| is the cardinal of the group.

Using our currently available database, which contains

fourty usable images with six lesions per image, plus the

papilla (which we included in this performance evaluation),

we measured A = 4.80% and F = 3.67% . Assuming a

normal distribution for the measured features, the detection

power of our method can then be formulated as follows: the

neo-vascularization in a lesion will be detected (with a 95%

confidence level) if it leads to a variation of the diffusion area

by 2A = 9.60% or of the fluorscence index by 2F = 7.34%.

One can argue that these numbers are over estimated because

the aforementioned pooling procedure into time bins intro-

duces a source of variability that is not accounted for in the

calculation. Furthermore, the database available to us con-

tained numerous images of bad to average quality. Although

we discarded the worst ones, we do believe that the accuracy

of this framework will greatly improve with a more controlled

acquisition procedure.

7. CONCLUSION

We described an integrated and mostly automated image

processing framework designed to detect and quantify post-

lesion retinal angiogenesis. We evaluated its robustness with

a reproducibility analysis performed on a database composed

of real fluorescein angiograms, and showed that its accuracy

allows detecting changes in the diffusion area or the fluores-

cence level of less than 10%. This framework, that was here

tested on artificial laser-induced lesions, also has a direct ap-

plications in clinical and pharmacological studies, to follow

the evolution of retinopathies or evaluate the effectiveness of

a drug to reduce the angiogenesis.
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